Tập tin:Line integral of scalar field.gif
Tập tin này được lưu ở Wikimedia Commons và nó có thể được sử dụng ở các dự án khác. Lời miêu tả của tập tin tại trang mô tả được hiển thị dưới đây.
Miêu tả
| Miêu tảLine integral of scalar field.gif |
English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. See full description.
فارسی: انتگرال خطی یک میدان اسکالر f. مقدار انتگرال مساحت زیر منحنی C تعریف شده توسط سطح (z = f(x,y است.
Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale.
Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y).
Русский: Иллюстрация криволинейного интеграла первого рода на скалярном поле. |
|||
| Ngày | ||||
| Nguồn gốc | Tác phẩm được tạo bởi người tải lên | |||
| Tác giả | Lucas Vieira | |||
| Giấy phép (Dùng lại tập tin) |
|
|||
| Phiên bản khác |
Đánh giá
|
Bức hình này đã được chọn làm hình ảnh của ngày trên Wikimedia Commons vào ngày 11 tháng 4 năm 2013. Dưới đây là lời mô tả: English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. Các ngôn ngữ khác:
Deutsch: Illustration eines Kurvenintegrals erster Art über ein Skalarfeld, f. Das Gebiet unter der Kurve C, abgetragen auf die Oberfläche definiert von z = f(x,y), ist der Wert des Integrals. English: Line integral of a scalar field, f. The area under the curve C, traced on the surface defined by z = f(x,y), is the value of the integral. Français : L′intégrale curviligne d′un champ scalaire, f. L′aire sous la courbe C, tracée sur la surface définie par z = f(x,y), est la valeur de l'intégrale. Italiano: Integrale di linea di un campo scalare, f. Il valore dell'integrale è pari all'area sotto la curva C, tracciata sulla superficie definita da z = f(x,y). Magyar: Az f skalártér vonal menti integrálja. Az integrál értéke a z=f(x,y) függvénnyel definiált C görbe alatti terület. Nederlands: Lijnintegraal van een scalair veld, f. Het gebied onder de curve C, getraceerd op het vlak gedefinieerd door z = f(x,y), is de waarde van de integraal. |
Full description (English)
A scalar field has a value associated to each point in space. Examples of scalar fields are height, temperature or pressure maps. In a two-dimensional field, the value at each point can be thought of as a height of a surface embedded in three dimensions. The line integral of a curve along this scalar field is equivalent to the area under a curve traced over the surface defined by the field.
In this animation, all these processes are represented step-by-step, directly linking the concept of the line integral over a scalar field to the representation of integrals familiar to students, as the area under a simpler curve. A breakdown of the steps:
- The color-coded scalar field f and a curve C are shown. The curve C starts at a and ends at b
- The field is rotated in 3D to illustrate how the scalar field describes a surface. The curve C, in blue, is now shown along this surface. This shows how at each point in the curve, a scalar value (the height) can be associated.
- The curve is projected onto the plane XY (in gray), giving us the red curve, which is exactly the curve C as seen from above in the beginning. This is red curve is the curve in which the line integral is performed. The distances from the projected curve (red) to the curve along the surface (blue) describes a "curtain" surface (in blue).
- The graph is rotated to face the curve from a better angle
- The projected curve is rectified (made straight), and the same transformation follows on the blue curve, along the surface. This shows how the line integral is applied to the arc length of the given curve
- The graph is rotated so we view the blue surface defined by both curves face on
- This final view illustrates the line integral as the familiar integral of a function, whose value is the "signed area" between the X axis (the red curve, now a straight line) and the blue curve (which gives the value of the scalar field at each point). Thus, we conclude that the two integrals are the same, illustrating the concept of a line integral on a scalar field in an intuitive way.
Chú thích
Khoản mục được tả trong tập tin này
mô tả
Giá trị nào đó không có khoản mục Wikidata
Commons quality assessment Tiếng Anh
Wikimedia Commons featured picture Tiếng Anh
24 7 2012
image/gif
animated GIF Tiếng Anh
594.260 byte
300 pixel
400 pixel
checksum Tiếng Anh
ca4612114c1a19dab27e3efc8d1f8ab31de1db42
Lịch sử tập tin
Nhấn vào ngày/giờ để xem nội dung tập tin tại thời điểm đó.
| Ngày/Giờ | Hình xem trước | Kích cỡ | Thành viên | Miêu tả | |
|---|---|---|---|---|---|
| hiện tại | 17:43, ngày 14 tháng 8 năm 2012 | 400×300 (580 kB) | wikimediacommons>LucasVB | Unoptimized. Sticking with local palettes for better color resolution per frame. Added bands of color to the field instead of a smooth gradient. Overall, it should look sharper, though the file will be bigger. Worth it, I say! |
Trang sử dụng tập tin
Trang sau sử dụng tập tin này:

