Tập tin:Sphere wireframe.svg
Từ testwiki
Bước tới điều hướng
Bước tới tìm kiếm
Kích thước bản xem trước PNG này của tập tin SVG: 400×400 điểm ảnh. Độ phân giải khác: 240×240 điểm ảnh | 480×480 điểm ảnh | 768×768 điểm ảnh | 1.024×1.024 điểm ảnh | 2.048×2.048 điểm ảnh.
Tập tin gốc (tập tin SVG, 400×400 điểm ảnh trên danh nghĩa, kích thước: 8 kB)
Tập tin này được lưu ở Wikimedia Commons và nó có thể được sử dụng ở các dự án khác. Lời miêu tả của tập tin tại trang mô tả được hiển thị dưới đây.
Miêu tả
| Miêu tảSphere wireframe.svg |
English: Sphere wireframe - orthogonal projection of a sphere. The image shows lines, which are drawn as they were painted onto the surface of a sphere. The angular distance between two lines is 10°. The SVG file is created by the below C++-program, which calculates each edge of a line as an ellipse-bow. The backside of the sphere has an opacity of 0.25. The axis tilt is 52.5°. |
| Ngày | |
| Nguồn gốc | Tác phẩm được tạo bởi người tải lên |
| Tác giả | Geek3 |
| Phiên bản khác | Sphere wireframe 10deg 10r.svg |
Source Code
This image can be completely generated by the following source code. If you have the gnu compiler collection installed, the programm can be compiled by the following commands:
g++ sphere_wireframe.cpp -o sphere_wireframe
and run :
./sphere_wireframe > Sphere_wireframe.svg
It creates file Sphere_wireframe.svg in working directory. This file can be viewed using rsvg-view program :
rsvg-view Sphere_wireframe.svg
Here is cpp code in file : sphere_wireframe.cpp
/* sphere - creates a svg vector-graphics file which depicts a wireframe sphere
*
* Copyright (C) 2008 Wikimedia foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to:
* The Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
/* The expressions in this code are not proven to be correct.
* Hence this code probably contains lots of bugs. Be aware! */
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace std;
const double PI = 3.1415926535897932;
const double DEG = PI / 180.0;
/********************************* settings **********************************/
int n_lon = 18; // number of latitude fields (18 => 10° each)
int n_lat = 18; // half number of longitude fields (18 => 10° each)
double lon_offset = 2.5 * DEG; // offset of the meridians
double w = 52.5 * DEG; // axial tilt (0° => axis is perpendicular to image plane)
double stripe_grad = 0.5 * DEG; // width of each line
int image_size = 400; // width and height of the image in pixels
double back_opacity = 0.25; // opacity of the sphere's backside
char color[] = "#334070"; // color of lines
int istep = 2; // svg code indentation step
/*****************************************************************************/
double sqr(double x)
{
return(x * x);
}
// commands for svg-code:
void indent(int n, bool in_tag = false)
{
n *= istep;
if (in_tag) n += istep + 1;
for (int i = 0; i < n; i++) cout << " ";
}
void M()
{
cout << "M ";
}
void Z()
{
cout << "Z ";
}
void xy(double x, double y)
{
cout << x << ",";
cout << y << " ";
}
void arc(double a, double b, double x_axis_rot, bool large_arc, bool sweep)
{ // draws an elliptic arc
if (b < 0.5E-6)
{ // flat ellipses are not rendered properly => use line
cout << "L ";
}
else
{
cout << "A ";
cout << a << ","; // semi-major axis
cout << b << " "; // semi-minor axis
cout << x_axis_rot << " ";
cout << large_arc << " ";
cout << sweep << " ";
}
}
void circle(bool clockwise)
{
M();
xy(-1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(-1, 0);
Z();
}
void start_svg_file()
{
cout << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n";
cout << "<svg id=\"Sphere_wireframe\"\n";
cout << " version=\"1.1\"\n";
cout << " baseProfile=\"full\"\n";
cout << " xmlns=\"http://www.w3.org/2000/svg\"\n";
cout << " xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n";
cout << " width=\"" << image_size << "\"\n";
cout << " height=\"" << image_size << "\">\n\n";
cout << " <title>Sphere wireframe</title>\n\n";
cout << " <desc>\n";
cout << " about: http://commons.wikimedia.org/wiki/Image:Sphere_wireframe.svg\n";
cout << " rights: GNU Free Documentation license,\n";
cout << " Creative Commons Attribution ShareAlike license\n";
cout << " </desc>\n\n";
cout << " <g id=\"sphere\" transform=\"scale(" << 0.5 * image_size;
cout << ", " << -0.5 * image_size << ") translate(1, -1)\">\n";
}
void end_svg_file()
{
cout << " </g>\n</svg>\n";
}
int main (int argc, char *argv[])
{
// accept -lat and -lon as parameter
for (int i = 2; i < argc; i++)
{
if (isdigit(argv[i][0]) || (sizeof(argv[i]) > sizeof(char)
&& isdigit(argv[i][1])
&& (argv[i][0] == '.' || argv[i][0] == '-')))
{
if (strcmp(argv[i - 1], "-lon") == 0)
{
lon_offset = atof(argv[i]) * DEG;
}
if (strcmp(argv[i - 1], "-lat") == 0)
{
w = atof(argv[i]) * DEG;
}
}
}
double cosw = cos(w), sinw = sin(w);
double d = 0.5 * stripe_grad;
start_svg_file();
int ind = 2; // initial indentation level
indent(ind);
cout << "<g id=\"sphere_back\" transform=\"rotate(180)\" ";
cout << "opacity=\"" << back_opacity << "\">\n";
indent(++ind);
cout << "<g id=\"sphere_half\">\n";
// meridians
indent(++ind); cout << "<g id=\"meridians\"\n";
indent(ind++, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
double a = abs(cos(d));
for (int i_lon = 0; i_lon < n_lat; i_lon++)
{ // draw one meridian
double longitude = lon_offset + (i_lon * 180.0 / n_lat) * DEG;
double lon[2];
lon[0] = longitude + d;
lon[1] = longitude - d;
indent(ind);
cout << "<path id=\"meridian";
cout << i_lon << "\"\n";
indent(ind, true);
cout << "d=\"";
double axis_rot = atan2(-1.0 / tan(longitude), cosw);
if (sinw < 0)
axis_rot += PI;
double w2 = sin(longitude) * sinw;
double b = abs(w2 * cos(d));
double sinw1 = sin(d) / sqrt(1.0 - sqr(sin(longitude) * sinw));
if (abs(sinw1) >= 1.0)
{ // stripe covers edge of the circle
double w3 = sqrt(1.0 - sqr(w2)) * sin(d);
circle(false);
// ellipse
M();
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 + cos(axis_rot) * a,
-cos(axis_rot) * w3 + sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
Z();
}
else
{ // draw a disrupted ellipse bow
double w1 = asin(sinw1);
M();
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 1, 0);
xy(cos(axis_rot - w1), sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(cos(axis_rot + w1), sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 0, 1);
xy(-cos(axis_rot - w1), -sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
}
Z();
cout << "\" />\n";
}
indent(--ind); cout << "</g>\n";
cout << endl;
// circles of latitude
indent(ind); cout << "<g id=\"circles_of_latitude\"\n";
indent(ind, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
ind++;
for (int i_lat = 1; i_lat < n_lon; i_lat++)
{ // draw one circle of latitude
double latitude = (i_lat * 180.0 / n_lon - 90.0) * DEG;
double lat[2];
lat[0] = latitude + d;
lat[1] = latitude - d;
double x[2], yd[2], ym[2];
for (int i = 0; i < 2; i++)
{
x[i] = abs(cos(lat[i]));
yd[i] = abs(cosw * cos(lat[i]));
ym[i] = sinw * sin(lat[i]);
}
double h[4]; // height of each point above image plane
h[0] = sin(lat[0] + w);
h[1] = sin(lat[0] - w);
h[2] = sin(lat[1] + w);
h[3] = sin(lat[1] - w);
if (h[0] > 0 || h[1] > 0 || h[2] > 0 || h[3] > 0)
{ // at least any part visible
indent(ind);
cout << "<path id=\"circle_of_latitude";
cout << i_lat << "\"\n";
indent(ind, true);
cout << "d=\"";
for (int i = 0; i < 2; i++)
{
if ((h[2*i] >= 0 && h[2*i+1] >= 0)
&& (h[2*i] > 0 || h[2*i+1] > 0))
{ // complete ellipse
M();
xy(-x[i], ym[i]); // startpoint
for (int z = 1; z > -2; z -= 2)
{
arc(x[i], yd[i], 0, 1, i);
xy(z * x[i], ym[i]);
}
Z();
if (h[2-2*i] * h[3-2*i] < 0)
{ // partly ellipse + partly circle
double yp = sin(lat[1-i]) / sinw;
double xp = sqrt(1.0 - sqr(yp));
if (sinw < 0)
{
xp = -xp;
}
M();
xy(-xp, yp);
arc(x[1-i], yd[1-i], 0,
sin(lat[1-i]) * cosw > 0, cosw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw >= 0);
xy(-xp, yp);
Z();
}
else if (h[2-2*i] <= 0 && h[3-2*i] <= 0)
{ // stripe covers edge of the circle
circle(cosw < 0);
}
}
}
if ((h[0] * h[1] < 0 && h[2] <= 0 && h[3] <= 0)
|| (h[0] <= 0 && h[1] <= 0 && h[2] * h[3] < 0))
{
// one slice visible
int i = h[0] <= 0 && h[1] <= 0;
double yp = sin(lat[i]) / sinw;
double xp = sqrt(1.0 - yp * yp);
M();
xy(-xp, yp);
arc(x[i], yd[i], 0, sin(lat[i]) * cosw > 0, cosw * sinw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw * sinw < 0);
xy(-xp, yp);
Z();
}
else if (h[0] * h[1] < 0 && h[2] * h[3] < 0)
{
// disrupted ellipse bow
double xp[2], yp[2];
for (int i = 0; i < 2; i++)
{
yp[i] = sin(lat[i]) / sinw;
xp[i] = sqrt(1.0 - sqr(yp[i]));
if (sinw < 0) xp[i] = -xp[i];
}
M();
xy(-xp[0], yp[0]);
arc(x[0], yd[0], 0, sin(lat[0]) * cosw > 0, cosw >= 0);
xy(xp[0], yp[0]);
arc(1, 1, 0, 0, 0);
xy(xp[1], yp[1]);
arc(x[1], yd[1], 0, sin(lat[1]) * cosw > 0, cosw < 0);
xy(-xp[1], yp[1]);
arc(1, 1, 0, 0, 0);
xy(-xp[0], yp[0]);
Z();
}
cout << "\" />\n";
}
}
for (int i = 0; i < 3; i++)
{
indent(--ind);
cout << "</g>\n";
}
indent(ind--);
cout << "<use id=\"sphere_front\" xlink:href=\"#sphere_half\" />\n";
end_svg_file();
}
Giấy phép
Tôi, người giữ bản quyền tác phẩm này, từ đây phát hành nó theo các giấy phép sau:
| Bạn có quyền sao chép, phân phối và/hoặc sửa đổi tài liệu này theo những điều khoản được quy định trong Giấy phép Tài liệu Tự do GNU, phiên bản 1.2 hoặc các phiên bản mới hơn được Quỹ Phần mềm Tự do; quy định; ngoại trừ những phần không được sửa đổi, bìa trước và bìa sau. Bạn có thể xem giấy phép nói trên ở phần Giấy phép Tài liệu Tự do GNU.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Tác phẩm này được phát hành theo giấy phép Creative Commons Ghi công–Chia sẻ tương tự, các phiên bản 3.0 Chưa chuyển đổi, 2.5 Chung, 2.0 Chung, và 1.0 Chung.
- Bạn được phép:
- chia sẻ – sao chép, phân phối và chuyển giao tác phẩm
- pha trộn – để chuyển thể tác phẩm
- Theo các điều kiện sau:
- ghi công – Bạn phải ghi lại tác giả và nguồn, liên kết đến giấy phép, và các thay đổi đã được thực hiện, nếu có. Bạn có thể làm các điều trên bằng bất kỳ cách hợp lý nào, miễn sao không ám chỉ rằng người cho giấy phép ủng hộ bạn hay việc sử dụng của bạn.
- chia sẻ tương tự – Nếu bạn biến tấu, biến đổi, hoặc tạo tác phẩm mới dựa trên tác phẩm này, bạn chỉ được phép phân phối tác phẩm mới theo giấy phép y hệt hoặc tương thích với tác phẩm gốc.
Bạn có thể chọn giấy phép mà bạn muốn.
Chú thích
Ghi một dòng giải thích những gì có trong tập tin này
Khoản mục được tả trong tập tin này
mô tả
Giá trị nào đó không có khoản mục Wikidata
tháng 11 2008
Lịch sử tập tin
Nhấn vào ngày/giờ để xem nội dung tập tin tại thời điểm đó.
| Ngày/Giờ | Hình xem trước | Kích cỡ | Thành viên | Miêu tả | |
|---|---|---|---|---|---|
| hiện tại | 17:10, ngày 23 tháng 11 năm 2008 | 400×400 (8 kB) | wikimediacommons>Geek3 | {{Information |Description={{en|1=Sphere wireframe - the image shows lines, which are drawn as they were painted onto the surface of a sphere. The distance between two lines is 10°. The svg file is created by the below c++-program, which calculates each |
Trang sử dụng tập tin
Trang sau sử dụng tập tin này: