Danh sách tích phân với hàm hypebolic

Từ testwiki
Bước tới điều hướng Bước tới tìm kiếm

Bản mẫu:Danh sách tích phân Dưới đây là danh sách tích phân với hàm hypebolic.

sinhcxdx=1ccoshcx
coshcxdx=1csinhcx
sinh2cxdx=14csinh2cxx2
cosh2cxdx=14csinh2cx+x2
sinhncxdx=1cnsinhn1cxcoshcxn1nsinhn2cxdx(n>0)
hay: sinhncxdx=1c(n+1)sinhn+1cxcoshcxn+2n+1sinhn+2cxdx(n<0n1)
coshncxdx=1cnsinhcxcoshn1cx+n1ncoshn2cxdx(n>0)
hay: coshncxdx=1c(n+1)sinhcxcoshn+1cxn+2n+1coshn+2cxdx(n<0n1)
dxsinhcx=1cln|tanhcx2|
hay: dxsinhcx=1cln|coshcx1sinhcx|
hay: dxsinhcx=1cln|sinhcxcoshcx+1|
hay: dxsinhcx=1cln|coshcx1coshcx+1|
dxcoshcx=2carctanecx
dxsinhncx=coshcxc(n1)sinhn1cxn2n1dxsinhn2cx(n1)
dxcoshncx=sinhcxc(n1)coshn1cx+n2n1dxcoshn2cx(n1)
coshncxsinhmcxdx=coshn1cxc(nm)sinhm1cx+n1nmcoshn2cxsinhmcxdx(mn)
hay: coshncxsinhmcxdx=coshn+1cxc(m1)sinhm1cx+nm+2m1coshncxsinhm2cxdx(m1)
hay: coshncxsinhmcxdx=coshn1cxc(m1)sinhm1cx+n1m1coshn2cxsinhm2cxdx(m1)
sinhmcxcoshncxdx=sinhm1cxc(mn)coshn1cx+m1mnsinhm2cxcoshncxdx(mn)
hay: sinhmcxcoshncxdx=sinhm+1cxc(n1)coshn1cx+mn+2n1sinhmcxcoshn2cxdx(n1)
hay: sinhmcxcoshncxdx=sinhm1cxc(n1)coshn1cx+m1n1sinhm2cxcoshn2cxdx(n1)
xsinhcxdx=1cxcoshcx1c2sinhcx
xcoshcxdx=1cxsinhcx1c2coshcx
tanhcxdx=1cln|coshcx|
cothcxdx=1cln|sinhcx|
tanhncxdx=1c(n1)tanhn1cx+tanhn2cxdx(n1)
cothncxdx=1c(n1)cothn1cx+cothn2cxdx(n1)
sinhbxsinhcxdx=1b2c2(bsinhcxcoshbxccoshcxsinhbx)(b2c2)
coshbxcoshcxdx=1b2c2(bsinhbxcoshcxcsinhcxcoshbx)(b2c2)
coshbxsinhcxdx=1b2c2(bsinhbxsinhcxccoshbxcoshcx)(b2c2)
sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)ca2+c2sinh(ax+b)cos(cx+d)
sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)
cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)ca2+c2cosh(ax+b)cos(cx+d)
cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)

Xem thêm

Tham khảo

Bản mẫu:Tham khảo

Liên kết ngoài