Giải tích số

Từ testwiki
Bước tới điều hướng Bước tới tìm kiếm

Bản mẫu:1000 bài cơ bản

Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60 + 51/602 + 10/603 = 1.41421296...[1] Ảnh của Bill Casselman.[2]

Giải tích số (tiếng Anh: numerical analysis), còn gọi là phương pháp tính, là ngành nghiên cứu về thuật toán sử dụng các số xấp xỉ đối với hàm liên tục (phân biệt với toán học rời rạc).

Một trong những bản ghi chép toán học sớm nhất về giải tích số là một bản ghi Babylon YBC 7289, trong đó nêu một phép tính xấp xỉ 2, độ dài đường chéo của hình vuông đơn vị.[3]

Phương pháp trực tiếp và phương pháp lặp

Phương pháp trực tiếp và phương pháp lặp

Xét bài toán

3x3+4=28

tìm x.

Phương pháp trực tiếp
3x3 + 4 = 28.
Trừ 4 3x3 = 24.
Chia cho 3 x3 = 8.
Lấy căn bậc ba x = 2.

Đối với phương pháp lặp, đặt f(x) = 3x3 - 24. Lấy a = 0, b = 3, f(a) = -24, f(b) = 57.

Phương pháp lặp
a b trung gian f(trung gian)
0 3 1.5 -13.875
1.5 3 2.25 10.17...
1.5 2.25 1.875 -4.22...
1.875 2.25 2.0625 2.32...

Theo bảng này, ta thấy nghiệm của phương trình nằm giữa 1.875 và 2.0625. Ta có thể lấy nghiệm là bất cứ giá trị nào trong đoạn này với sai số nhỏ hơn 0.2.

Rời rạc hóa

Bản mẫu:Fact

Chú thích

Bản mẫu:Tham khảo

Tham khảo

Liên kết ngoài

Bản mẫu:Thể loại Commons

Bản mẫu:Toán Bản mẫu:Khoa học Máy tính Bản mẫu:Authority control

  1. Bản mẫu:Chú thích web
  2. YBC 7289, Bill Casselman
  3. The New Zealand Qualification authority specifically mentions this skill in document 13004 version 2, dated ngày 17 tháng 10 năm 2003 titled CARPENTRY THEORY: Demonstrate knowledge of setting out a building