Quá trình thực nghiệm

Từ testwiki
Bước tới điều hướng Bước tới tìm kiếm

Quá trình thực nghiệm là công cụ quan trọng để giải các bài toán ước lượng và kiểm định giả thiết thống kê. Đây là công cụ đặc biệt quan trọng khi mô hình thống kê là phi tham số hay bán tham số, đó là mô hình có một hay nhiều thành phần chưa biết là một hàm đo được hay một đại lượng vô hạn chiều. Các phương pháp quá trình thực nghiệm là kỹ thuật công hiệu để đánh giá các tính chất của ước lượng dựa trên mô hình bán tham số như tính vững, sự hội tụ theo phân phối và sự hiệu lực của bootstrap.

Quá trình thực nghiệm

Cho ξ1,ξ2,,ξn là các phần tử ngẫu nhiên độc lập cùng phân phối, xác định trên không gian xác suất (Ω,,), nhận giá trị trong không gian đo được (X,), với phân phối xác suất μ trên xác định bởi μ(B)=({ωΩ:ξ1(ω)B}). Khi đó

μn=1n(ϵξ1+ϵξ2++ϵξn)

được gọi là độ đo thực nghiệm của ξ1,ξ2,,ξn trên , ở đây

ϵx(B)={1,xB0,xB,B.

Giả sử 𝒞, ta ký hiệu IChàm đặc trưng của tập C𝒞. Khi đó, μn(C) có thể viết dưới dạng

μn(C)=1ni=1nIC(ξi);

và ký hiệu (μn(C))C𝒞 là độ đo thực nghiệm với tập chỉ số 𝒞.

Đặt βn(C)=n(μn(C)μ(C)),C𝒞.

Khi đó, (βn(C))C𝒞 được gọi là quá trình thực nghiệm với tập chỉ số 𝒞 hay 𝒞-quá trình thực nghiệm.

Tham khảo

  • Peter Gaenssler, Empirical processes, Mathematical Institute of the University of München, 1983.
  • Jon A. Wellner, Empirical processes: Theory and Applications, Delft Technical University, Washington, 2005.

Tham khảo

Bản mẫu:Tham khảo

Bản mẫu:Sơ khai